Synthese, Schwingungsspektren und Normalkoordinatenanalyse von 1,2-Di-tert-butyltetrahalogendisilanen

B. Reiter und K. Hassler

Institut für Anorganische Chemie, T.U., Stremayrgasse 16, A-8010-Graz (Austria) (Eingegangen den 28. Juni 1993)

Abstract

The cleavage of the silicon-phenyl bonds of 1,2-di-tert-butyltetraphenyldisilane with hydrogen halides HCl, HBr and HI produces 1,2-di-tert-butyltetrachlorodisilane, 1,2-di-tert-butyltetrablorodisilane in good yields. ^tBuBr₂SiSiBr₂^tBu easily reacts with ZnF₂ in diethylether to form the tetrafluoroderivative. With trifluormethanesulfonicacid, two phenyl groups can be removed selectively from ^tBuPh₂SiSiPh₂^tBu. The subsequent reaction with LiX gives the disilanes ^tBuPhXSiSiXPh^tBu (X = F, Cl, Br, I). Finally, the asymmetric tert-butyldisilanes ^tBu₂HSiSiPh₂^tBu, ^tBu₂BrSiSiBr₂^tBu and ^tBuHSiSiH₂^tBu can be obtained from Ph₂^tBuSiK and ^tBu₂SiSiCl, followed by bromination with HBr and reduction with LiAlH₄. The infrared and Raman vibrational spectra of ^tBuX₂SiSiX₂^tBu are reported and assigned with the aid of a normal coordinate analysis.

Zusammenfassung

Die Spaltung der Silicium-Phenylbindungen im 1,2-Di-tert-butyltetraphenyldisilan mit HCl, HBr und HI liefert in hohen Ausbeuten 1,2-Di-tert-butyltetrachlordisilan, 1,2-Di-tert-butyltetrabromdisilan und 1,2-Di-tert-butyltetraioddisilan. ¹BuBr₂SiSiBr₂[•]Bu kann mit ZnF₂ in Diethylether glatt zum Tetrafluorderivat umgesetzt werden. Mit Trifluormethansulfonsäure ist die selektive Entfernung zweier Phenylgruppen möglich, die nachfolgende Reaktion mit LiX ergibt die Disilane ¹BuPhXSiSiXPh^{*}Bu (X = F, Cl, Br, I). Schließlich können die asymmetrisch substituierten tert-Butyldisilane ¹Bu₂HSiSiPh₂^{*}Bu, ¹Bu₂BrSiSiBr₂^{*}Bu und ¹Bu₂HSiSiH₂^{*}Bu durch Umsetzung von Ph₂^{*}BuSiK mit ⁵Bu₂SiHCl und nachfolgende Bromierung mit HBr bzw. Hydrierung (LiAlH₄) erhalten werden. Die Infrarot und Ramanspektren der Tetrahalogenverbindungen ⁶BuX₂SiSiX₂^{*}Bu wurden mit Hilfe einer Normalkoordinatenanalyse zugeordnet.

Key words: Silane; Infrared spectroscopy; Raman spectroscopy

1. Einleitung

Die Fähigkeit sperriger Substituenten zur Stabilisierung ungewöhnlicher Strukturen und Atomanordnungen hat in den letzten fünfzehn Jahren zur Entdeckung einer Reihe von neuartigen Molekülen geführt. Erwähnt seien die durch reduktive Enthalogenierung von 'Bu₂SiBr₂ bzw. 'BuSiCl₂SiCl₂'Bu synthetisierten und durch die voluminösen tert-Butylgruppen stabilisierte Si-Dreiringstruktur [Si('Bu)₂]₃ und Tetracyclo [3.3.0.0.^{2.7}0^{3.6}]octasilan Si₈'Bu₈Cl₂ [1]. Als weitere interessante substituierte Siliciumstrukturen seien Tetrasilatetraphosphacuban (^tBuSi)₄P₄ [2], Tetramesityldisilen [3] und Verbindungen mit SiC-Doppelbindung [4] angeführt.

Die Anwesenheit abschirmender Substituenten verändert aber oftmals die Reaktivität eines Moleküls in drastischer Weise, sodaß bereits bei der Darstellung von Ausgangsverbindungen verschärfte Reaktionsbedingungen notwendig sind. Häufig müssen gänzlich neue Synthesewege beschritten werden.

Die durch tert-Butylgruppen verringerte Reaktivität von Chlorsilanen, z.B. bei Kopplungsreaktionen mit Alkalimetallen, erzwingt oft die Verwendung der reak-

Correspondence to: Dr. K. Hassler.

tiveren Brom- oder Iodderivate, die aber wiederum nicht ganz einfach zugänglich sind.

Die vorliegende Arbeit berichtet über einige als Synthesebausteine geeignet erscheinende tert-Butyldisilane und über die auch den Synthetiker interessierenden wichtigsten Merkmale ihrer Schwingungsspektren.

2. Präparative Ergebnisse

Phenylierte Siliciumverbindungen stellen ideale Ausgangsprodukte für eine Vielzahl von funktionellen Silanen dar. Meistens sind sie bequem zugänglich, unempfindlich gegen Sauerstoff und Feuchtigkeit und deshalb unbegrenzt lagerbar. Eine Reihe von Methoden erlaubt es, die Phenylgruppen gegen Halogene auszutauschen, wobei bei mehrfacher Phenylsubstitution die Substituenten sogar nacheinander durch verschiedene Halogene ersetzt werden können. Es sind dies die Reaktion in flüssigen Halogenwasserstoffen unter Druck [5], die Reaktion mit gasförmigen Halogenwasserstoffen in Benzol [5] sowie die Umsetzung mit Trifluormethansulfonsäure und LiX (X = F, Cl, Br, Cl) [6]. Ausgehend von 1,2-Di-tert-butyltetraphenyldisilan, dessen Synthese von uns optimiert worden ist, können nach Schema 1 mit den Halogenwasserstoffen HCl, HBr und HI (unter Zugabe katalytischer Mengen an AlX₃) die Tetrahalogenderivate ^tBuX₂SiSiX₂^tBu (X = Cl, Br, I) in nahezu quantitativen Ausbeuten erhalten werden. Die Fluorierung von ^tBuBr₂SiSiBr₂^tBu mit Zinkfluorid verläuft in Diethylether glatt und in hohen Ausbeuten.

Mit viel Erfahrung und Fingerspitzengefühl war es möglich, die Reaktion auf der Stufe der 1,2-Diphenyl-1,2-dihalogen-1,2-di-tert-butyldisilane abzustoppen, jedoch gelingen die Ansätze nicht immer. Zielführender ist es zwei Phenylgruppen mit Trifluormethansulfonsäure (TfH) abzuspalten und das entstandene ^tBuPhTfSiSiTfPh^tBu in einem nachfolgenden Schritt mit LiX umzusetzen. Die erreichbaren Ausbeuten an (^tBuPhXSi)₂ betragen etwa 60%. 1,2-Di-tert-butyltetraphenyldisilan kann mit Na/K-Legierung in Diethylether glatt zur Silylkaliumverbindung Ph₂^tBuSiK gespalten werden, womit der tert-Butyldiphenylsilylrest für weitere Synthesen zur Verfügung steht. Die Umsetzung mit Di-tert-butylchlorsilan ergibt demnach 1,1,2-Tri-tert-butyl-2,2-diphenyldisilan, dessen Umsetzung

Schema 1. In dieser Arbeit synthetisierte und charakterisierte tert-Butyldisilane.

mit HBr/AlBr₃ überraschender Weise 1,1,2-Tri-tertbutyltribromdisilan als einziges Reaktionsprodukt liefert. Offensichtlich ist die vereinte Elektronegativität zweier tert-Butylgruppen so gering, daß die SiH-Bindung quantitativ mit HBr bromiert wird. Üblicherweise tritt diese Reaktion nicht ein.

 ${}^{t}Bu_{2}BrSiSiBr_{2}{}^{t}Bu$ läßt sich mit LiAlH₄ erwartungsgemäß ohne Probleme zum 1,1,2-Tri-tert-butyldisilan, über dessen Schwingungsspektren an anderer Stelle berichtet werden wird, reduzieren.

3. Experimenteller Teil

3.1. 1,2-Di-tert-butyltetraphenyldisilan

Die in [7] angegebene Synthese kann durch Verwendung von Na anstelle von Li und durch Verwendung von Xylol als Lösungsmittel verbessert werden. Die erreichbaren Ausbeuten liegen zwischen 70% und 80%. 100 g (0,364 mol) ^tBuPh₂SiCl werden in 2 l sorgfältig getrocknetem Xylol gelöst und mit 20 g (0,869 mol) Natrium während 72 St zum Rückfluß erhitzt. Man filtriert heiß, bereits beim Abkühlen des Filtrates scheidet sich ^tBuPh₂SiSiPh₂^tBu in Form farbloser Kristalle ab. Man erhält etwa 60 g (\approx 70% d.Th.) des Disilans. δ (²⁹Si) = -12,6 ppm gegen TMS.

3.2. 1,2-Di-tert-butyltetrachlor-, -tetrabrom-, -tetraioddisilan

Alle drei genannten Disilane werden unter den selben Reaktionsbedingungen, durch Verwendung von HCl/AlCl₃, HBr/AlBr₃ oder HI/AlI₃ dargestellt, sodaß eine generelle Arbeitsvorschrift angegeben sei. Man löst die gewünschte Menge an ^tBuPh₂SiSiPh₂^tBu in Benzol (typischerweise 15 g des Disilans in 100 ml Benzol), gibt eine kleine Menge (etwa 200-500 mg) des Katalysators AlX₃ zu und leitet in kräftigem Strom gasförmigen Halogenwasserstoff HX ein. Die Lösung erwärmt sich dabei bis zum Rückfluß, und man setzt das Einleiten von HX solange fort, bis kein Halogenwasserstoff mehr aufgenommen wird. Das Lösungsmittel wird im Vakuum abgezogen und der feste Rückstand mit n-Heptan aufgenommen. Man dekantiert oder filtriert vom ungelösten AlX₃ und reinigt die Tetrahalogendisilane durch Sublimation ('BuCl₂SiSi-Cl₂^tBu) oder durch Umkristallisation aus n-Heptan. Alle genannten Disilane sind farblos.

Elementaranalysen:	gefunden	berechnet
$\overline{C_8H_{18}Si_2Cl_4}$	30,90% C	30,77% C
	5,84% H	5,84% H
$C_8H_{18}Si_2Br_4$	19,61% C	19,57% C
0 10 2 4	3,70% H	3,85% H
$C_8H_{18}Si_2I_4$	14,17% C	14,00% C
0 10 2 4	2,68% H	2,77% H

$C_8H_{18}Si_2Cl_4: \delta(^{29}Si) =$	+18,8 ppm
$C_8 H_{18} Si_2 Br_4$: $\delta(^{29}Si) =$	+10,5 ppm
$C_8 H_{18} Si_2 I_4$: $\delta(^{29}Si) = -$	– 24,8 ppm

3.3. 1,2-Di-tert-butyltetrafluordisilan

7,32 g (0,0149 mol) 1,2-Di-tert-butyltetrabromdisilan, gelöst in 40 ml Diethylether, werden im Verlauf einer Stunde zu einer Suspension von 4 g ZnF₂ (0,0387 mol) in 80 ml Et₂O getropft. Nach etwa 10 St (der Reaktionsverlauf kann gaschromatographisch verfolgt werden) wird dekantiert und fraktioniert. Man erhält etwa 1,2 g (33% d.Th) ^tBuF₂SiSiF₂^tBu, Kp₂₀ = 35°C.

Elementaranalyse $(C_8H_{18}Si_2F_4)$:	gefunden	berechnet
	38,92% C	38,99% C
	7,03% H	7,36% H
$\delta(^{29}\mathrm{Si}) = -6,7 \mathrm{ppm}$	$\delta(^{19}\mathrm{F}) =$	– 141,4 ppm
$^{1}J(SiF) = 357,8$ Hz	$^{2}J(SiF) =$	= 47,1 Hz

3.4. 1,2-Di-tert-butyl-1,2-diphenyldihalogendisilane

Wiederum wird eine allgemeine Arbeitsvorschrift angegeben, da alle 1,2-Di-tert-butyl-1,2-diphenyldihalogendisilane auf gleichem Wege erhalten werden können.

Man legt die gewünschte Menge an 1,2-Di-tertbutyltetraphenyldisilan in Toluol vor (typischerweise 3,7 g (0,0077 mol) in 150 ml Lösungsmittel) und fügt bei 0°C die erforderliche Menge Trifluormethansulfonsäure (3,0 g = 0,02 mol) zu. Man rührt über Nacht bei Raumtemperatur, wobei sich nahezu quantitativ ['BuPhTfSi]₂ (δ (²⁹Si) = 20,5 ppm) bildet.

Anschließend wird das Toluol abkondensiert und durch 180 ml Diethylether ersetzt. Zu dieser Lösung gibt man bei 0°C die äquivalente Menge (0,0154 mol) des Lithiumhalogenids und rührt weitere 12 St bei Raumtemperatur. Um die Salze der Trifluormethansulfonsäure, die als voluminöse Niederschläge anfallen, quantitativ abzutrennen wird der Diethylether gegen Toluol getauscht und zentrifugiert. Beim Einengen und Abkühlen des Filtrates fallen die Disilane in Form farbloser Kristalle an, die Ausbeuten liegen bei etwa 60% d.Th.

Elementaranalyse $(C_{20}H_{28}Si_2F_2)$:	gefunden	berechnet
	66,28% C 7,94% H	66,24% C 7,78% H

²⁹ Si (2 Isom	nere):	
15,45 ppm	¹ J(SiF) 319,7 Hz	² J(SiF) 27,9 Hz
13,48 ppm	¹ J(SiF) 318,4 Hz	$^{2}J(SiF)$ 31,5 Hz

IR (Nujolverreibung < 1400 cm⁻¹): 1376s, 1364m, 1302w, 1262w, 1191w, 1110s, 1066w, 1029w, 1005w, 997w, 939w, 881w, 829sh, 808m, 736m, 699s, 636w, 602m, 546w, 477s, 463m, 432w, 407w, 356m.

Elementaranalyse

$(C_{20}H_{28}Si_2Cl_2)$:	gefunden	berechnet	
	60,65% C 7,25% H	60,74% C 7,14% H	

 $\delta(^{29}\text{Si}) = +7,5 \text{ ppm}$

IR (Nujolverreibung $< 1200 \text{ cm}^{-1}$): 1191s, 1157s, 1101vs, 1067m, 1030m, 1010s, 1004s, 997s, 972w, 940s, 919w, 850w, 814vs, 736vs, 698vs, 646w, 621m, 600vs, 517vs, 471vs, 421vs, 393s, 351vs.

Elementaranalyse

$(C_{20}H_{28}Si_2Br_2)$:	gefunden	berechnet
	49,10% C 5,94% H	49,58% C 5,83% H

 $\delta(^{29}\text{Si}): +5,2 \text{ ppm}$

IR (Nujolverreibung $< 1000 \text{ cm}^{-1}$): 997s, 972vw, 939s, 919m, 851w, 812vs, 737vs, 720sh, 698vs, 670sh, 621m, 595vs, 476vs, 452vs, 413vs, 388m, 350vs.

Elementaranalyse

$(C_{20}H_{28}Si_2I_2)$:	gefunden	berechnet
	41,33% C	41,53% C
	4,69% H	4,88% H

 $\delta(^{29}\text{Si}): -5,95 \text{ ppm}$

IR (Nujolverreibung $< 1000 \text{ cm}^{-1}$): 997w, 937w, 811w, 736s, 698s, 588w, 476vs, 434s, 400s, 378m, 338s.

3.5. tert-Butyldiphenylsilylkalium

10 g (0,021 mol) ['BuPh₂Si]₂ werden in 100 ml Et₂O gclöst, mit 1,5 g Na/K-Legierung (1:3) versetzt und bei Raumtemperatur über Nacht gerührt. Es bildet sich eine dunkelbraune Lösung von 'BuPh₂SiK, die Ausbeute ist quantitativ.

3.6. 1,1,2-Tri-tert-butyl-2,2-diphenyldisilan

7,5 g (0,042 mol) ${}^{t}Bu_{2}SiHCl$ werden in 150 ml n-Heptan gelöst und unter Eiskühlung tropfenweise

mit der äquivalenten Menge an 'BuPh₂SiK in Et₂O (bereitet aus 10 g ('BuPh₂Si)₂) versetzt. Man erhitzt noch 3 St zum Rückfluß, destilliert den Diethylether ab und filtriert heiß von den entstandenen Salzen. 1,1,2-Tri-tert-butyl-2,2-diphenyldisilan kann durch Vakuumdestillation (Kp_{0,05} = 170–180°C) oder durch Um-kristallisieren aus n-Heptan gereinigt werden. Die Ausbeute beträgt etwa 12 g (75% d.Th.).

Elementaranalyse $(C_{24}H_{38}Si_2)$:	gefunden	berechnet
	74,46% C 10,30% H	75,3% C 10,0% H

Die Ergebnisse der Kohlenstoffanalysen waren durch SiC-Bildung immer etwas zu niedrig.

$$\delta$$
⁽²⁹Si): -SiPh₂^tBu: -8,1 ppm
-SiH^tBu₂: -3,7 ppm; ¹J(SiH): 168,9 Hz

IR ($< 2200 \text{ cm}^{-1}$): 2072vs, 1955w, 1896w, 1820w, 1773w, 1733w, 1719w, 1707w, 1685w, 1652w, 1588w, 1540vw, 1506vw, 1485s, 1471vs, 1427vs, 1390s, 1363w, 1326w, 1260m, 1192m, 1157m, 1097s, 1028w, 1012m, 999m, 935m, 816s, 791s, 762s, 701vs (sh), 621w, 595m (sh), 518s, 486s, 441m, 400m, 354m.

3.7. 1,1,2-Tribrom-tri-tert-butyldisilan

Sctzt man 1,1,2-Tri-tert-butyl-2,2-diphenyldisilan in der zuvor beschriebenen Weise mit HBr/AlBr₃ (in Benzol) um, so werden nicht nur die Phenylgruppen, sondern auch die SiH-Funktion gegen Brom ersetzt. ^tBu₂BrSiSiBr₂^tBu kann durch Vakuumdestillation (Kp_{0,05} = 120°C) gereinigt werden, die Ausbeuten liegen bei 80%-90%.

Elementaranalyse $(C_{12}H_{27}Si_2Br_3)$:	gefunden	berechnet
	31,1% C 5,98% H	30,84% C 5,82% H

 $\delta(^{29}\text{Si}): -{}^{t}\text{BuBr}_{2}\text{Si}: + 21,1 \text{ ppm} \\ -{}^{t}\text{Bu}_{2}\text{BrSi}: + 22,9 \text{ ppm}$

IR (Nujolverreibung, $< 1000 \text{ cm}^{-1}$): 937vs, 830sh, 813vs, 760vw, 735ms, 698ms, 617s, 605sh, 579s, 540w, 521mw, 495w, 459vs, 417vs, 400sh, 352s, 340sh.

3.8. 1,1,2-Tri-tert-butyldisilan

Die Reduktion von ${}^{t}Bu_{2}BrSiSiBr_{2}{}^{t}Bu mit LiAlH_{4}$ nach Standardverfahren ergibt in etwa 80%-iger Ausbeute ${}^{t}Bu_{2}HSiSiH_{2}{}^{t}Bu$, Kp₃₈ = 120°C. Elementaranalyse

$(C_{12}H_{30}Si_2)$:	gefunden	berechnet
	62,45% C 13,20% H	62,52% C 13,12% H

 δ ⁽²⁹Si): -^tBuSiH₂: -42,6 ppm ¹J(SiH) = 175,5 Hz ²J(SiH) = 7,1 Hz -^tBu₂SiH: -3,2 ppm ¹J(SiH) = 172,9 Hz ²J(SiH) = 6,7 Hz

J(SiSi) wurde mittels INADEQUATE-Pulsfolge zu 69,3 Hz bestimmt.

IR (als Flüssigkeit zwischen CsBr-Scheiben, $< 2500 \text{ cm}^{-1}$): 2103vs, 2080vs, 1468vs, 1440sh, 1388s, 1363vs, 1326m, 1210mw, 1198mw, 1188m, 1163mw, 1089m, 1035m, 1011vs, 935sh, 926vs,b, 880vw, 822vs, 790vs, 730sh, 706vs,b, 656mw, 610w, 590sh, 575s, 497s, 480mw, 434m, 387m, 368mw, 349ms.

4. Schwingungsspektren und Normalkoordinatenanalyse

Tabelle 1 faßt die Infrarot- und Ramanspektren der 1,2-Di-tert-butyltetrahalogendisilane zusammen. Die Schwingungsspektren tert-Butyl-substituierter Disilane und Polysilane zeigen im Bereich von 300-450 cm⁻¹ eine Reihe von IR- und Ramanlinien, die auf Deformationen des SiCC₃-Fragmentes zurückgehen. Sie zeichnen sich oftmals durch hohe IR- und mittlere Ramanintensitäten aus und verdecken den Bereich der SiSi-Valenzschwingungen. Im Vergleich zu methylierten Polysilanen, deren SiSi-Streckschwingungen aufgrund ihrer hohen Intensitäten leicht zu lokalisieren sind, ist eine fundierte Interpretation der Spektren von tert-Butylsilanen nur mit Hilfe der NCA möglich.

Die der Normalkoordinatenanalyse nach der FG-Methode [8] zugrunde gelegte Struktur der 1,2-Ditert-butyltetrahalogendisilane wurde von ähnlichen

TABELLE 1. Infrarot- und Raman-Spektren (< 1270 cm ⁻	⁻¹) der 1,2-Di-tert-butyltetrahalogendisilane
---	---

^t BuF ₂ SiSiF ₂ ^t Bu		^t BuCl ₂ SiSiCl ₂ ^t Bu		^t BuBr ₂ SiSiBr ₂ ^t B	វ័យ	^t BuI ₂ SiSiI ₂ ^t Bu	
IR (l)	Ra (1)	IR (s)	Ra (s)	IR (s)	Ra (s)	IR (s)	Ra (s)
1260vvw	_	1260vvw	-	1260vvw	_	1260vvw	<u> </u>
1225vvw	1229ms	1204m	1203ms	1220w,sh	~ 1220sh		1225sh
1186w	1188m	1185m	1192m	1180m	1185m	1175m	1196s
1005m	1010w	1065s	1007w	1009s	1018w	1005ms	1013mw
942m	943m	940s	942m	939s	943w	937ms	950mw
900vs	~ 890vw						
860sh	861m,p						
846vs	824ms						
804v	800vvw?	815vs	816s	815sh	816mw		818m
		735sh		806vs		804vs	
723w		723w			743w		750vw?
666w	669s,p	670vvw		680sh	700w		
606vs		616vs	635s	667m	672w		616m
		587sh	589w	598vs	631mw		
		562vvs	552w	530w	604w	584vs	587vvw?
	517vs,p	525 vw		480sh	514w		513mw
		483vs		471vs,b	480m		
422vs	402w	443m	440vs	435sh	469m		
362ms	367w,p	396vs	395m,sh	405vs	418ms	424vs	435m
347ms	345vvw	352vs	385mw,b	390sh	391w	390sh	406m
	312vvw			341vs	337w	374vs	383m
						327vs	325w
			308vs				300vvw?
		279m	234m				271w
	253m,p		188s		250sh		239w
	219m		158w		230vs		203vvs
	197s,p		139s		185m		183w
			131s		139vs		136m
			112ms		125sh??		122vs
	107m				114s		104vs
					93m		81vs

Molekülen wie ${}^{t}Bu_{2}SiCl_{2}$ [9], ${}^{t}BuMe_{2}SiH$ [10] oder $Si_{2}Cl_{6}$ [11] übertragen.

Die verwendeten Bindungslängen waren [pm]: d(SiF) = 156, d(SiCl) = 202; d(SiBr) = 219; d(SiI) =243; d(SiSi) = 232; d(SiC) = 189; d(CC) = 154,6; d(CH) = 109.

Alle Winkel wurden einheitlich als Tetraederwinkel (109°28') angenommen, um innerhalb der tert-Butyldisilane Vergleichbarkeit der berechneten Kraftkonstanten zu gewährleisten. Die Rechnungen wurden ferner nur für das *trans*-Rotamere durchgeführt, wobei die höchstsymmetrische Anordnung der tert-Butylgruppen vorausgesetzt wurde. Die 1,2-Di-tert-butyltetrahalogendisilane gehören dann der Punktgruppe C_{2h} an, und die Symmetrieanalyse ergibt folgende Verteilung der Grundschwingungen auf die irreduziblen Darstellungen

$$\Gamma_{\text{vib},C_{2h}} = 25\text{A}_{g}(\text{Ra}) + 20\text{B}_{g}(\text{Ra}) + 21\text{A}_{u}(\text{IR}) + 24\text{B}_{u}(\text{IR})$$

Zieht man die nichtbeobachteten Torsionsschwingungen ab, so verbleiben $24A_g$, $17B_g$, $17A_u$ und $23B_u$ -Koordinaten. Nach einem von Wilson [8] angegebenen Verfahren wurden die praktisch lagekonstanten CH₃-Gruppenschwingungen des Typs ν_{as} -, ν_s -, δ_{as} - und δ_s -CH₃ aus den G-Matrizen abgespalten, weil an CH-Kraftkonstanten kein Interesse bestand. Die ρ -CH₃-Schwingungen wurden aber berücksichtigt, da sie stark mit CC-Streckschwingungen verkoppelt sind.

Mit diesen Vereinfachungen reduziert sich die Dimension des Schwingungsproblems auf

$$\Gamma_{\rm vib} = 14A_{\rm g}({\rm Ra}) + 9B_{\rm g}({\rm Ra}) + 9A_{\rm u}({\rm IR}) + 13B_{\rm u}({\rm IR})$$

TABELLE 2. Schwingungsformen der 1,2-Di-tert-butyldisilane und ihre Numerierung

Schwin- gungs- typ	Ag	B _g	A _u	B _u
$\overline{\rho \text{ CH}_3}$	ν_1, ν_2, ν_3	$\nu_{15}, \nu_{16}, \nu_{17}$	v ₂₄ , v ₂₅ , v ₂₆	v ₃₃ , v ₃₄ , v ₃₅
$\nu_{\rm as}$ CC ₃	ν_4	ν_{18}	ν_{27}	V 36
$\nu_{\rm s}$ CC ₃	ν_5			ν ₃₇
ν SiC	ν_6			ν_{38}
v SiSi	٧7			
$\nu_{\rm as}$ SiX ₂		ν ₁₉	v 28	
$\nu_{\rm s} {\rm SiX}_2$	V ₈			V 39
$\delta_{s} CC_{3}$	V9			ν_{40}
$\delta_{as} CC_3$	ν_{10}	ν_{20}	V 29	ν_{41}
ρCC_3	ν_{11}	ν_{21}	ν_{30}	V42
δ SiSiC	ν_{12}			ν_{43}
δSiX_2	ν ₁₃			V44
γSiX_2	v ₁₄			V45
τ SiX ₂		V 22	ν_{31}	
ρ SiX ₂		ν_{23}	ν_{32}	

Die Schwingungstypen und ihre Bezeichnung sind in Tabelle 2 angegeben, wobei lokale $C_{3\nu}$ -Symmetrie der CH₃ und CC₃-Gruppen sowie lokale C_{2\nu}-Symmetrie für das SiX₂-Strukturelement vorausgesetzt wurden (Gruppenschwingungskonzept).

Die Anwendung des FG-Verfahrens setzt naturgemäß die Aufstellung von Symmetriekoordinaten voraus. Für den tert-Butylrest wurden aus lokalen C_{3v} -Symmetriekoordinaten der CH₃-Gruppe des Typs Δr_1 $+ \Delta r_2 + \Delta r_3$ (ν_s CH₃, A₁), $2\Delta r_1 - \Delta r_2 - \Delta r_3$ (ν_{as} CH₃, E) und $\Delta r_2 - \Delta r_3$ (ν_{as} CH₃, E) die Symmetriekoordinaten für die Rassen A₁, A₂ und E der Punktgruppe C_{3v} gebildet (für die CCH- und HCH-Winkel besitzen die Symmetriekoordinaten dieselbe Vorzeichensigna-

TABELLE 3. Lokale Symmetriekoordinaten und in allen Rassen festgehaltene, von Null verschiedene, Symmetriekraftkonstanten (N m⁻¹) ^a der tert-Butylgruppe

$\overline{S_1 = 1/\sqrt{3} (\Delta r_1 + \Delta r_2 + \Delta r_3)}$	ν _s CC ₃	$F_{11} = 445$	$F_{14} = 20$		
$S_2 = 1/\sqrt{6} \left(2\Delta r_1 - \Delta r_2 - \Delta r_3 \right)$	$\nu_{\rm as} {\rm CC}_3$	$F_{22} = 415$	$F_{25} = -10$	$F_{27} = 15$	
$S_3 = 1/\sqrt{2} \left(\Delta r_2 - \Delta r_3\right)$	$\nu_{as}CC_3$	$F_{33} = 415$	$F_{36} = -10$	$F_{38} = 15$	
$S_4 = 1/\sqrt{3} (\Delta \gamma_1 + \Delta \gamma_2 + \Delta \gamma_3)$ $= -\Delta \beta_1 - \Delta \beta_2 - \Delta \beta_3)$	δ _s CC ₃	$F_{44} = 40$			
$S_5 = 1/\sqrt{3} (2\Delta\gamma_1 - \Delta\gamma_2 - \Delta\gamma_3)$	$\delta_{as}CC_3$	$F_{55} = 43$			
$S_6 = 1/\sqrt{2} \left(\Delta \gamma_2 - \Delta \gamma_3 \right)$	$\delta_{as}CC_3$	$F_{66} = 43$			
$S_7 = 1/\sqrt{3} \left(2\Delta\beta_1 - \Delta\beta_2 - \Delta\beta_3\right)$	ρCC ₃	$F_{77} = 36$			
$S_8 = 1/\sqrt{2} (\Delta \beta_2 - \Delta \beta_3)$	ρCC_3	$F_{88} = 36$			
S ₉ ^b	ρCH_3	$F_{99} = 57$			
S ₁₀ ^b	$\rho_A CH_3$	$F_{10,10} = 55$			
S ₁₁ ^b	$\rho_{\rm B} \rm CH_3$	$F_{11,11} = 57$			

^a Deformationskraftkonstanten bezogen auf r(CC).

^b ρ -CH₃-Koordinaten normiert auf r(CH). Explizite Ausdrücke für die ρ -CH₃-Koordinaten können auf Wunsch bei den Autoren angefordert werden.

tur). In E müssen dafür beide (entarteten) Symmetriekoordinatensätze aufgestellt werden.

Aus den so erhaltenen lokalen Symmetriekoordinaten der tert-Butylgruppe wurden in einem weiteren Schritt jene der Punktgruppe C_{2h} gebildet. Aus Gründen des zur Verfügung stehenden Raumes wird auf ihre explizite Wiedergabe verzichtet, sie können aber auf Wunsch bei den Autoren aufgefordert werden.

Diese Vorgangsweise bietet den Vorteil, daß alle die tert-Butylgruppe betreffenden Kraftkonstanten von Verbindungen, in denen der C₄H₉-Substituent C_{3v} -Symmetrie besitzt (z.B. C₄H₉SiH₃ [12]), übertragen werden können und in den Rassen A_g, B_g, A_u, B_u

TABELLE 4. Berechnete und beobachtete Grundschwingungen (cm	n ⁻¹) der 1,2-Di-tert-butyltetrahalogendisilane
---	---

ν _i		^t BuF ₂ Si-SiF ₂ ^t Bu		^t BuCl ₂ Si-SiCl ₂ ^t Bu		^t BuBr ₂ Si-SiBr ₂ ^t Bu		^t BuI ₂ Si-S	Sil ₂ ^t Bu
		ν _{beob.}	ν _{ber.}	$\nu_{\text{beob.}}$	ν _{ber.}	$\nu_{\text{beob.}}$	ν _{ber.}	ν _{beob.}	$\nu_{\rm ber.}$
Ag	$\boldsymbol{\nu}_1$	1188	1202	1192	1199	1185	1199	1196	1199
•	<i>v</i> ₂	1010	1010	1007	1009	1018	1009	1013	1009
	ν_3	943	950	942	950	943	950	950	950
	ν_4	861	834	816	825	816	825	818	824
	ν_5	1229	1266	1203	1266	1220	1265	1225	1265
	ν_6	669	674	635	650	672	643	614	637
	ν_7	517	523	589	626	631	600	587	565
	ν_8	824	814	308	301	230	212	203	180
	ν_9	367	377	440	461	469	436	435	418
	ν_{10}	402	397	395	393	418	393	406	391
	$\boldsymbol{\nu}_{11}$	253	262	234	240	250	250	239	244
	ν_{12}	107	102	-	88	-	71	-	56
	ν_{13}	219	228	158	171	139	134	104	106
	ν_{14}	197	197	139	128	93	85	81	70
Bg	ν_{15}	1010	1020	1007	1020	1018	1020	1013	1020
	ν_{16}	1010	1003	1007	1003	1018	1003	1013	1003
	ν_{17}	943	953	942	954	943	953	950	953
	ν_{18}	1229	1264	1203	1265	1220	1265	1225	1265
	ν_{19}	890	881	635	653	604	587	513	510
	ν_{20}	402	393	385	390	391	388	383	384
	ν_{21}	312	304	308	278	250	258	239	245
	ν_{22}	219	211	158	168	125	121	104	93
	v ₂₃	-	166	131	120	93	88	81	74
Au	V 24	1005	1020	1006	1020	1009	1020	1005	1020
	ν_{25}	1005	1003	1006	1003	1009	1003	1005	1003
	V 26	942	954	940	953	939	953	937	953
	ν_{27}	1225	1268	1204	1265	1220	1265	1260	1265
	ν_{28}	900	867	616	614	598	538		458
	v 29	422	396	396	390	435	386	390	380
	ν_{30}	347	306	279	276		258		239
	ν_{31}	-	170		130		98		85
	ν_{32}	-	134		92		58		42
Bu	ν_{33}	1186	1203	1185	1203	1180	1200	1175	1200
	ν_{34}	1005	1009	1006	1009	1009	1009	1005	1009
	ν_{35}	942	949	940	949	939	949	937	949
	ν_{36}	846	833	815	828	806	825	804	824
	ν_{37}	1225	1267	1204	1268	1220	1268	1260	1267
	ν_{38}	606	619	670	642	667	629	584	622
	ν_{39}	804	785	562	527	471	450		219
	ν_{40}	362	378	352	365	341	357	374	388
	ν_{41}	422	. 415	443	408	405	403	424	416
	ν_{42}	347	328	279	282		247	327	348
	ν_{43}		67		60		54		50
	ν_{44}		249		186		141		121
	V ₄₅		205		155		113		84

	^t BuX ₂ SiSiX ₂ ^t Bu				Si ₂ X ₆ [16,17]				
	F	Cl	Br	I	F	Cl	Br	I	
f(SiSi)	220 ± 15	210 ± 15 270	200 ± 15 220	190 ± 15 155	240 ± 20 596	240 ± 20 290	210 ± 15 230	190 ± 10 170	
f(SiC)	290	280	280	280	070	2/0			

TABELLE 5. Valenzkraftkonstanten (N m⁻¹) der 1,2-Di-tert-butyltetrahalogendisilane

gleiche Zahlenwerte aufweisen sollten (wenn von Wechselwirkungen über die SiSi-Bindung hinweg abgesehen wird. Diese sollten jedenfalls sehr klein sein). In den Kraftkonstantenrechnungen wurden daher nur F-Elemente, die sich auf das CX_2SiSiX_2C -Molekülfragment beziehen, iterativ verfeinert.

In Tabelle 3 finden sich die Symmetriekraftkonstanten der tert-Butylgruppe, die in allen Rassen unverändert beibehalten wurden. Die ρ -CH₃-Symmetriekraftkonstanten (bezogen auf r(CH)) der Struktur $2\beta_1-\beta_2-\beta_3$ ($\beta = \langle CCH \rangle$, in Tabelle 3 als ρ_A bezeichnet, wurden mit 55 Nm⁻¹, jene der Linearkombination $\beta_2-\beta_3$ mit 57 Nm⁻¹ eingesetzt. Auch bei SiCH₃-Verbindungen [13,14] ist es notwendig unterschiedliche Kraftkonstanten für die beiden Typen von $\rho(CH_3)$ -Schwingungen einzuführen. Die hier verwendeten Kraftkonstanten der tert-Butylgruppe sind mit den von Schachtschneider [15] für Alkane errechneten Größen weitgehend identisch.

Tabelle 4 stellt die berechneten den beobachteten Frequenzen gegenüber. Tabelle 5 faßt die wichtigsten Valenzkraftkonstanten zusammen und vergleicht sie mit den Werten für die Hexahalogendisilane [16,17].

5. Diskussion

Die Kraftkonstanten von Tabelle 5 lassen ziemlich klar erkennen, daß die tert-Butylgruppe aufgrund ihrer geringen Elektronegativität sowohl SiSi- als auch SiX-Valenzkraftkonstanten erniedrigt, wenn sie ein Halogenatom in einem Molekül ersetzt. Sie gleicht in diesem Verhalten etwa einer SiMe₃-Gruppe, jedoch dürfte ihr Einfluß etwas geringer sein.

Allgemein steigen die SiSi-Valenzkraftkonstanten von Disilanen mit zunehmender Summe der Elektronegativitäten der Substituenten an [18]. Gleiches gilt auch für die ²⁹Si²⁹Si-Kopplungskonstanten [19]. Beide Effekte lassen sich mit einer Zunahme des s-Charakters in der SiSi-Bindung mit steigender Substituentenelektronegativität zwanglos erklären.

Die Normalkoordinatenanalysen zeigen auch eine Reihe von kinetischen Kopplungen auf, von denen jene zwischen SiSi- und Si-Halogenschwingungen besonders erwähnenswert sind. Zusätzlich tritt noch $\rho_s CC_3$ als Kopplungspartner hinzu, sodaß sich die Schwingungsenergie, zumindest in den Rassen A_g , über mehrere Koordinaten verteilt. Die genaue Eingrenzung der entsprechenden Valenzkraftkonstanten (insbesonders f(SiSi)) wird dadurch naturgemäß erschwert und ungenau.

Zusätzlich beeinflussen die Wechselwirkungskraftkonstanten f(SiSi / < SiSiX), f(SiSi / < XSiX) und f(SiSi / < XSiC), deren Betrag nur von ähnlichen Molekülen abgeschätzt werden kann, die Größe der SiSi-Valenzkraftkonstante. Sie kann deshalb höchstens auf $\pm 5\%$ (etwa ± 15 N m⁻¹) eingegrenzt werden. Die berechneten SiC-Kraftkonstanten gleichen jenen methylierter Silane, z.B. Si₂Me₆ (290 N m⁻¹ [20]), (Me₃Si)₂O (284 N m⁻¹ [21]) oder Me₃SiCl (289 N m⁻¹ [21]). Dies steht mit der aus einer großen Anzahl von SiC-Verbindungen gewonnenen Erkenntnis im Einklang, daß die SiC-Valenzkraftkonstanten durch Substituenten sowohl am Si- als auch am C-Atom nur geringfügig verändert werden. Gleiches gilt z.B. auch für ²⁹Si¹³C-Kopplungskonstanten [22].

Während die Spektren der Tetrafluorverbindung das Alternativverbot für die Punktgruppe C_{2h} befolgen scheint dies bei (¹BuCl₂Si)₂, (¹BuBr₂Si)₂ und (¹BuI₂ Si)₂ nicht der Fall zu sein (z.B. Koinzidenzen bei 396/395 cm⁻¹ und 587/589 cm⁻¹ beim Chlorderivat, 667/672 cm⁻¹ und 480/480 cm⁻¹ in der Bromverbindung). Diese Verletzungen des Alternativverbotes dürften wohl auf Wechselwirkungen im Kristallgitter zurückgehen, denn sie treten sowohl bei (¹BuF₂Si)₂ als auch bei (¹BuH₂Si)₂ nicht auf.

Dank

Die Autoren danken dem Fonds für die Unterstützung mit Personal- und Sachmittel im Rahmen des Projektes P7585-CHE.

Literatur

- A. Schäfer, M. Weidenbruch, K. Peters und H.G. von Schnering, Angew. Chem., 96 (1984) 311; Y. Kabe, M. Kuroda, Y. Honda, O. Yamashita, T. Kawase und S. Masamune, Angew. Chem., 100 (1988) 1793.
- 2 M. Baudler, G. Scholz, K.-F. Tebbe und M. Féher, Angew. Chem., 101 (1989) 352.
- 3 R. West, M.J. Fink und J. Michl, Science, 214 (1981) 1343.

- 4 A.G. Brook, S.C. Nybung, F. Abdesaken, B. Gutekunst, G. Gutekunst, R.K.M.R. Kalburg, Y.C. Poon, Y.-M. Chang und W. Wong-Ng, J. Am. Chem. Soc., 104 (1982) 5667.
- 5 Vgl. z.B. K. Hassler und U. Katzenbeisser, J. Organomet. Chem., 421 (1991) 151; K. Hassler und M. Pöschl, J. Organomet. Chem., 385 (1990) 201.
- 6 Vgl. z.B. W.J. Uhlig, J. Organomet. Chem., C45 (1991) 402; J. Chrusziel, M. Cypryk, E. Fossum und K. Matyjaszewski, Organometallics, 11 (1992) 3257.
- 7 G.W. Slugett und W.J. Leigh, Organometallics, 11 (1992) 3731.
- 8 E.B. Wilson, J.C. Decius und P.C. Cross, *Molecular Vibrations*, Mc Graw Hill, New York, 1955.
- 9 G.A. Forsyth und D.W.H. Rankin, J. Mol. Struct., 222 (1990) 467.
- 10 G.A. Forsyth, D.W.H. Rankin und H.E. Robertson, J. Mol.
- Struct., 263 (1991) 311. 11 J. Haase, Z. Naturforsch. Teil A, 28 (1973) 542.
- 12 K. Hassler und M. Weidenbruch, in Vorbereitung.

- 13 S. Biedermann, H. Bürger, K. Hassler und F. Höfler, Monatsh. Chem., 111 (1980) 703.
- 14 S. Biedermann, H. Bürger, K. Hassler und F. Höfler, Monatsh. Chem., 111 (1980) 715.
- 15 J.H. Schachtschneider und R.G. Snyder, Spectrochim. Acta, 19 (1963) 117.
- 16 F. Höfler, W. Sawodny and E. Hengge, Spectrochim. Acta, 26 A (1970) 819.
- 17 F. Höfler, S. Waldhör und E. Hengge, Spectrochim. Acta, 28 A (1972) 29.
- 18 E. Hengge, Monatsh. Chem., 102 (1971) 734.
- 19 K. Hassler, Spectrochim. Acta, 41A (1985) 729.
- 20 F. Höfler, Monatsh. Chem., 107 (1976) 893.
- 21 F. Höfler, Z. Naturforsch., Teil A, Vol. 27 (1972) 760.
- 22 H. Marsmann, NMR Basic Principles and Progress, 17, Springer-Verlag, Berlin, 1981.